

071906T4AEN

AGRICULTURAL ENGINEERING LEVEL6

ENG/OS/AGR/CC/04/6

Printed By: Technical And Vocational College

Date: 21.11.2025 03:43 PM

Apply Principles of Fluid Mechanics

November/December 2025

Printed Technical And Vocational College Date: 21.11.2025 03:43

PM

Printed By And Vocational College Date: 21.11.2025 03:43 PM

TVET CURRICULUM DEVELOPMENT, ASSESSMENT AND CERTIFICATION COUNCIL (TVET CDACC)

Printed Technical And Vocational College Date: 21.11.2025 03:43

PM

WRITTEN ASSESSMENT

Time: 3 HOURS

Printed By: Technical And Vocational College Date:

21.11.2025 03:43 PM

INSTRUCTIONS TO CANDIDATE

Printed By: Technical And Vocational College Date: 21.11.2025 03:43 PM

1. This paper consists of **TWO** sections: **A** and **B**.
Printed By: Technical And Vocational College
Date: 21.11.2025 03:43 PM
2. Answer **ALL** questions in section A and **ANY THREE** (3) questions in section B.
3. Marks for each question are indicated in the brackets.
Printed By: Technical And Vocational College
4. Candidates are provided with **1** separate answer booklet.
5. Do not write on the question paper.

Printed By: Technical And Vocational College Date: 21.11.2025 03:43 PM

This paper consists of THREE (3) printed pages

Candidate should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

SECTION A (40 MARKS)

Answer ALL the questions in this section.

1. Fluid is a substance that ~~substance~~ ^{Printed By: Technical And Vocational College} continuously when subjected to external shearing force. State ~~FOUR~~ ^{Date: 21.11.2025 03:43 PM} classifications of fluids. (4 marks)
2. Water flows from a pipe with a diameter of 1 m into another pipe with a diameter of 0.5 m. If the velocity in the first pipe is 5 m/s, calculate the velocity in the second pipe.

Printed By Technical And Vocational College

Date: 21.11.2025 03:43 PM

(4 marks)

3. A pipe 200m long, 0.1m diameter carries water at $0.002\text{m}^3/\text{s}$. calculate the head loss due to friction. (take $f = 0.02$). ^{Printed By Technical And Vocational College} (4 marks)
4. Losses in pipes are a reduction in the total ~~energy~~ ^{Date: 21.11.2025 03:43 PM} of a fluid as it flows through a piping system. State FOUR minor losses in pipes (4 marks)
5. Non-uniform flow is that type of flow in which the velocity at any given time changes with respect to space. State TWO examples of non-uniform flow (2 marks)
6. Three-dimensional flow is that type of flow in which the velocity is a function of time and three mutually perpendicular directions. List TWO types of three-dimensional flow. (2 marks)
7. Laminar flow is a type of fluid motion. State FOUR characteristics of laminar flow.

Printed By: Technical And Vocational College

(4 marks)

8. Pumps are mechanical devices that transfer energy to a fluid to move it from one location to another, often increasing its pressure or elevation. Outline FOUR factors to consider in pump installation (4 marks)

9. The space between two square flat parallel plates is filled with oil. Each side of the plate is 720 mm. The thickness of the oil film is 15 mm. The upper plate, which moves at 3 m/s requires a force of 120 N to maintain the speed. Determine:

- a) The dynamic viscosity of the oil. (2 marks)

Printed By: Technical And Vocational College

is ~~co~~ ^{is} of oil. The specific gravity of oil is 0.95. (2 marks)

10. The Reynolds number is a dimensionless quantity in fluid dynamics used to predict whether fluid flow patterns will be laminar or turbulent. Flow depends on several factors. List FOUR factors that influence the Reynolds number. (4 marks)

11. A centrifugal pump is a mechanical device that converts rotational energy from a motor or engine into kinetic energy. Classify centrifugal pumps.

Date: 21.11.2025 03:43 PM

(4 marks)

SECTION B (60 MARKS)**Attempt Any THREE Questions in This Section**

12. A centrifugal pump on the principle that when a certain mass of fluid is rotated by an external force, it is thrown away from the central axis of rotation and a centrifugal head is impressed which enables it to rise to a higher level.

- Outline THREE efficiencies applicable to centrifugal pump. (6 marks)
- With the aid of a sketch describe the working principle of a centrifugal pump (14 marks)

13. Dimensional analysis is a mathematical technique which makes use of the study of the dimensions.

Printed By: Technical And Vocational College

- Explain FOUR uses of dimensional analysis (4 marks)
- Using the M-L-T System, perform the Dimension analysis of the following physical quantities
 - Pressure (2 Marks)
 - Force (2 Marks)
 - Specific weight (3 Marks)
- Prove that Reynolds number $Re = \frac{\rho V d}{\mu}$ is dimensionally homogeneous. (5 marks)

14. Viscosity is a measure of a fluid's resistance to flow. It's often described as the thickness of a fluid.

- Explain TWO effects of temperature on viscosity (4 marks)
- An oil of specific gravity 0.92 and viscosity 0.03 poise is to be transported at the rate of 2500 litres/sec. through a 1.2m diameter pipe. Tests were conducted on a meter pipe using water at 20°C. If the viscosity water at 20°C is 0.01 poise, find:
 - Velocity of flow in the model (3 marks)
 - Rate of flow in the model. (3 marks)

- A circular disc of diameter D is slowly rotated in a liquid of large viscosity (μ) at a small distance (h). Derive an expression of torque (T) necessary to maintain an angular velocity (ω). (6 marks)

15. The reciprocating pump is a positive displacement pump as it sucks and raises the liquid by actually displacing it with a piston/plunger.

- Explain the operation of a double acting reciprocating pump. (10 marks)

- A single-acting reciprocating pump, running at 50 r.p.m. delivers 0.00736 m³/s of water. The diameter of the piston is 200 mm and stroke length 300 mm. The suction and delivery heads are 3.5 m and 11.5 m respectively. Determine:

- Theoretical discharge, (2 marks)
- Co-efficient of discharge, (2 marks)

- iii. Percentage slip of the pump,
- iv. Power required to run the pump.

(2 marks)

(4 marks)